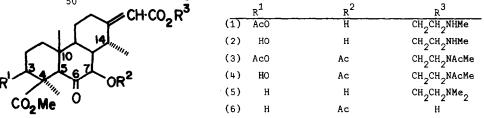
3B-ACETOXYNORERYTHROSUAMINE, A HIGHLY CYTOTOXIC ALKALOID FROM ERYTHROPHLEUM


CHLOROSTACHYS

J. W. Loder and R. H. Nearn

Division of Applied Organic Chemistry, CSIRO, P.O. Box 4331, Melbourne 3001. Australia

(Received in UK 27 May 1975; accepted for publication 5 June 1975)

We have recently isolated¹ four natural 3ß-acetates of diterpenoid alkaloids from *E. chlorostachys* bark and find them more cytotoxic against KB cell culture² than the corresponding 3ß-hydroxy alkoids which occur with them. The most toxic of these, which we consider to be 3ß-acetoxynorerythrosuamine (1), is a thousand times more active than the parent alcohol (2) and has an ED₅₀ value² of 0.0003 µg/ml.

 3β -Acetoxynorerythrosuamine has now been purified to give a stable crystalline hydrochloride, m.p. $173-5^{\circ}$: it has already been shown¹ that the new 3β -hydroxy alkaloid and the acetate have the same skeleton and are hydrolysed to 2-methylaminoethanol and a diterpene acid of the C4-C0₂ Me series as evinced by the usual p.m.r. signal (CDC1₃) near $\delta 3.75$ in spectra of its derivatives. By studying the change in chemical shift of C-methyl signals resulting from acetylation of a hydroxy group in a known orientation we were able to deduce¹ that the hydroxy and acetoxy alkoids are 3β -derivatives.

Acetylation of either base gives the same N,0,0-triacetyl derivative (3) indicating the presence of an additional hydroxy group and a comparison of the C-methyl resonances of this compound with those of the natural acetate shows changes of shifts similar to those shown by norcassamidine and its N,0-diacetyl derivative, establishing that the second hydroxy group is 7 β as in the latter compounds. Mild acetylation of 3 β -hydroxynorerythrosuamine for 15 minutes at room temperature with Ac₂0/pyridine gave a crystalline N,7 β 0-diacetyl derivative (4), m.p. 201[°], which again showed shift changes of the same magnitude. These figures are summarised in the Table of p.m.r. date below.

Part of the original p.m.r. evidence³ for the α -ketol system of erythrosuamine (5) was provided by the H7 α signal which has only one coupling, $J_{7,8}$, in place of the usual sextet from $J_{6a,7}, J_{6e,7}$ and $J_{7,8}$ and which occurs at lower field than usual as a result of deshielding by the C6 carbonyl group. In erythrosuamine the H7 α signal is a doublet at δ 3.93 (J 8 Hz), in 3 β -hydroxynorerythrosuamine at δ 3.94 (J 9 Hz), and in 3 β -acetoxynorerythrosuamine at δ 3.94 (J 10 Hz). It shows a typical acylation shift to δ 5.06 (J 11 Hz) in the N,7 β 0-

Compound	C4-Me	C14-Me	C10-Me
N,0,0,-Triacetyl derivative (3)	1.20	1.14	1.03
3β -Acetate (1)	1.22	1.23	1.01
Shift Difference	-0.02	-0.09	0.02
N,760-Diacetyl derivative (4)	1.35	1.12	0.98
3B-Hydroxynorerythrosuamine (2)	1.37	1.21	0.93
Shift Difference	-0.02	-0.09	0.05
N,780-Diacetylnorcassamidine	1.19	1.01	0.65
Norcassamidine	1.20	1.08	0.63
Shift Difference	-0.01	-0.07	0.02

COMPARISON OF CHEMICAL SHIFTS OF C-METHYL SIGNALS

diacetyl derivative and to δ 5.07 (J 11 Hz) in the N,0,0-triacetyl derivative which can be compared with δ 5.19 (J 10 Hz) for the acetate of erythrosuamic acid (6).

The second characteristic feature seen in the spectra³ of erythrosuamine derivatives is a singlet arising from H5a at δ 2.28 in those derivatives where it is not obscured by signals from the ester side chain. The equivalent singlet occurs at δ 2.33 to 2.35 in 3 β -hydroxynorerythrosuamine, the corresponding amide, methyl 3 β -hydroxyerythrosuamate, and in the N-acetyl and N,7 β O-diacetyl derivatives of 3 β -hydroxynorerythrosuamine. The downfield shift of c. 0.05 p.p.m. must be associated with the 3 β -hydroxy group, for a further deshielding occurs in the 3 β -acetoxy compounds where the singlet is at δ 2.46.

Oxidation of erythrosuamine and related compounds gives an α -diketone. The methyl ester of the 6,7-dioxo acid common to these oxidation products has a diosphenol chromophore with a pH-sensitive u.v. absorption at λ 283 nm (ϵ 4900) which moves to 337 nm (ϵ 2400) in alkali⁴. Methyl 3 β -hydroxyerythrosuamate behaves similarly in that it is oxidized with the complex from CrO₃-pyridine in methylene chloride to give a triketone as sole product, characterized by its C-methyl signals in the n.m.r. spectrum at δ 1.13, 1.20 (d, J 7 Hz) and 1.35. This compound shows the expected u.v. absorption of an α , β -unsaturated ester at λ_{max} (EtOH) 223 nm (ϵ 10900) and a second band at 279 nm (ϵ 1490) which shifts in alkali to 333 nm (ϵ 1450) as expected.

ACKNOWLEDGMENTS: We are indebted to Dr. J. L. Hartwell, Drug Research and Development Chemotherapy, National Cancer Institute, U.S.A., for the Tumour inhibition tests.

REFERENCES:

1. M. J. Falkiner, A. F. Faux, J. W. Loder and R. H. Nearn, Aust. J. Chem., 1975, 28, 645.

- 2. Assays were by the procedures described in Cancer Chemother. Rep., 1962, 25, 1.
- 3. A. Thorell, S. Agurell, F. Sandberg and T. Norin, Acta Chem. Scand., 1968, <u>22</u>, 2835.
- 4. B. Blessington, D. W. Mathieson and A. Korin, J. Chem. Soc. (C), 1970, 1704.